- Alonzo et al., 2013
M. Alonzo, K. Roth, D. Roberts
Identifying Santa Barbara’s urban tree species from AVIRIS imagery using canonical discriminant analysis
Remote. Sens. Lett., 4 (2013), pp. 513-521
- Alonzo et al., 2014
M. Alonzo, B. Bookhagen, D.A. Roberts
Urban tree species mapping using hyperspectral and lidar data fusion
Remote Sens. Environ., 148 (2014), pp. 70-83
- Amoatey et al., 2018
P. Amoatey, H. Sulaiman, A. Kwarteng, H.A. Al-Reasi
Above-ground carbon dynamics in different arid urban green spaces
Environ. Earth Sci., 77 (2018)
- Ardila et al., 2012
J.P. Ardila, W. Bijker, V.A. Tolpekin, A. Stein
Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images
Int. J. Appl. Earth Obs. Geoinf., 15 (2012), pp. 57-69
- Asmaryan et al., 2013
S. Asmaryan, T.A. Warner, V. Muradyan, G. Nersisyan
Mapping tree stress associated with urban pollution using the WorldView-2 Red Edge band
Remote. Sens. Lett., 4 (2013), pp. 200-209
- Baker et al., 2018
F. Baker, C.L. Smith, G. Cavan
A combined approach to classifying land surface cover of urban domestic gardens using citizen science data and high resolution image analysis
Remote Sens. (Basel), 10 (2018)
- Ban et al., 2010
Y.F. Ban, H.T. Hu, I.M. Rangel
Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: object-based and knowledge-based approach
Int. J. Remote Sens., 31 (2010), pp. 1391-1410
- Bardhan et al., 2016
R. Bardhan, R. Debnath, S. Bandopadhyay
A conceptual model for identifying the risk susceptibility of urban green spaces using geo-spatial techniques
Model. Earth Syst. Environ., 2 (2016)
- Behling et al., 2015
R. Behling, M. Bochow, S. Foerster, S. Roessner, H. Kaufmann
Automated GIS-based derivation of urban ecological indicators using hyperspectral remote sensing and height information
Ecol. Indic., 48 (2015), pp. 218-234
- Blaschke, 2010
T. Blaschke
Object based image analysis for remote sensing
ISPRS J. Photogramm. Remote. Sens., 65 (2010), pp. 2-16
- Caynes et al., 2016
R.J.C. Caynes, M.G.E. Mitchell, D.S. Wu, K. Johansen, J.R. Rhodes
Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space
Urban Ecosyst., 19 (2016), pp. 1749-1765
- Chance et al., 2016
C.M. Chance, N.C. Coops, A.A. Plowright, T.R. Tooke, A. Christen, N. Aven
Invasive shrub mapping in an urban environment from hyperspectral and LiDAR-Derived attributes
Front. Plant Sci., 7 (2016)
- Chang et al., 2015
Q. Chang, X.W. Liu, J.S. Wu, P. He
MSPA-based urban green infrastructure planning and management approach for urban sustainability: case study of Longgang in China
J. Urban Plan. Dev., 141 (2015)
- Chen et al., 2017a
B. Chen, Z. Nie, Z.Y. Chen, B. Xu
Quantitative estimation of 21st-century urban greenspace changes in Chinese populous cities
Sci. Total Environ., 609 (2017), pp. 956-965
- Chen et al., 2017b
G. Chen, E. Ozelkan, K.K. Singh, J. Zhou, M.R. Brown, R.K. Meentemeyer
Uncertainties in mapping forest carbon in urban ecosystems
J. Environ. Manage., 187 (2017), pp. 229-238
- Chen et al., 2018
W. Chen, H.P. Huang, J.W. Dong, Y. Zhang, Y.C. Tian, Z.Q. Yang
Social functional mapping of urban green space using remote sensing and social sensing data
ISPRS J. Photogramm. Remote Sens., 146 (2018), pp. 436-452
- Cheng et al., 2017
L. Cheng, S. Chen, S.S. Chu, S.Y. Li, Y. Yuan, Y. Wang, M.C. Li
LiDAR-based three-dimensional street landscape indices for urban habitability
Earth Sci. Inform., 10 (2017), pp. 457-470
- Degerickx et al., 2018
J. Degerickx, D.A. Roberts, J.P. McFadden, M. Hermy, B. Somers
Urban tree health assessment using airborne hyperspectral and LiDAR imagery
Int. J. Appl. Earth Obs. Geoinf., 73 (2018), pp. 26-38
- Dennis et al., 2018
M. Dennis, D. Barlow, G. Cavan, P.A. Cook, A. Gilchrist, J. Handley, P. James, J. Thompson, K. Tzoulas, C.P. Wheater, S. Lindley
Mapping urban green infrastructure: a novel landscape-based approach to incorporating land use and land cover in the mapping of human-dominated systems
Land (2018), p. 7
- Dhami et al., 2011
I. Dhami, K.G. Arano, T.A. Warner, R.M. Gazal, S. Joshi
Phenology of trees and urbanization: a comparative study between New York City and Ithaca, New York
Geocarto Int., 26 (2011), pp. 507-526
- Dian et al., 2016
Y.Y. Dian, Y. Pang, Y.F. Dong, Z.Y. Li
Urban tree species mapping using airborne LiDAR and hyperspectral data
J. Indian Soc. Remote Sens., 44 (2016), pp. 595-603
- Duarte et al., 2018
L. Duarte, A.C. Teodoro, A.T. Monteiro, M. Cunha, H. Goncalves
QPhenoMetrics: an open source software application to assess vegetation phenology metrics
Comput. Electron. Agric., 148 (2018), pp. 82-94
- Fassnacht et al., 2016
F.E. Fassnacht, H. Latifi, K. Sterenczak, A. Modzelewska, M. Lefsky, L.T. Waser, C. Straub, A. Ghosh
Review of studies on tree species classification from remotely sensed data
Remote Sens. Environ., 186 (2016), pp. 64-87
- Feng et al., 2015
Q.L. Feng, J.T. Liu, J.H. Gong
UAV remote sensing for urban vegetation mapping using random forest and texture analysis
Remote Sens. (Basel), 7 (2015), pp. 1074-1094
- Franco and Macdonald, 2018
S.F. Franco, J.L. Macdonald
Measurement and valuation of urban greenness: remote sensing and hedonic applications to Lisbon, Portugal
Reg. Sci. Urban Econ., 72 (2018), pp. 156-180
- Franke et al., 2009
J. Franke, D.A. Roberts, K. Halligan, G. Menz
Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments
Remote Sens. Environ., 113 (2009), pp. 1712-1723
- Fung and Siu, 2001
T. Fung, W.-L. Siu
A study of green space and its changes in Hong Kong using NDVI
Geogr. Environ. Model., 5 (2001), pp. 111-122
- Gan et al., 2014
M.Y. Gan, J.S. Deng, X.Y. Zheng, Y. Hong, K. Wang
Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis
PLoS One (2014), p. 9
- Geiss et al., 2016
C. Geiss, M. Klotz, A. Schmitt, H. Taubenbock
Object-based morphological profiles for classification of remote sensing imagery
IEEE Trans. Geosci. Remote. Sens., 54 (2016), pp. 5952-5963
- Goodwin et al., 2009
N.R. Goodwin, N.C. Coops, T.R. Tooke, A. Christen, J.A. Voogt
Characterizing urban surface cover and structure with airborne lidar technology
Can. J. Remote. Sens., 35 (2009), pp. 297-309
- Gorelick et al., 2017
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, R. Moore
Google earth engine: planetary-scale geospatial analysis for everyone
Remote Sens. Environ., 202 (2017), pp. 18-27
- Gu et al., 2015
H. Gu, A. Singh, P.A. Townsend
Detection of gradients of forest composition in an urban area using imaging spectroscopy
Remote Sens. Environ., 167 (2015), pp. 168-180
- Gupta et al., 2012
K. Gupta, P. Kumar, S.K. Pathan, K.P. Sharma
Urban Neighborhood Green Index – a measure of green spaces in urban areas
Landsc. Urban Plan., 105 (2012), pp. 325-335
- Haase et al., 2019
D. Haase, C. Janicke, T. Wellmann
Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city
Landsc. Urban Plan., 182 (2019), pp. 44-54
- Han et al., 2014
W.Q. Han, S.H. Zhao, X.Z. Feng, L. Chen
Extraction of multilayer vegetation coverage using airborne LiDAR discrete points with intensity information in urban areas: A case study in Nanjing City, China
Int. J. Appl. Earth Obs. Geoinf., 30 (2014), pp. 56-64
- Handayani et al., 2018a
H.H. Handayani, R.C. Estoque, Y. Murayama
Estimation of built-up and green volume using geospatial techniques: a case study of Surabaya, Indonesia
Sustain. Cities Soc., 37 (2018), pp. 581-593
- Handayani et al., 2018b
H.H. Handayani, Y. Murayama, M. Ranagalage, F. Liu, D.M.S.L.B. Dissanayake
Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: a case study of Surabaya, Indonesia
Remote Sens. (2018), p. 10
- Harris and Baumann, 2015
R. Harris, I. Baumann
Open data policies and satellite Earth observation
Space Policy, 32 (2015), pp. 44-53
- Hartling et al., 2019
S. Hartling, V. Sagan, P. Sidike, M. Maimaitijiang, J. Carron
Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning
Sensors (2019), p. 19
- Hecht et al., 2008
R. Hecht, G. Meinel, M.F. Buchroithner
Estimation of urban green volume based on single-pulse LiDAR data
IEEE Trans. Geosci. Remote Sens., 46 (2008), pp. 3832-3840
- Hofle et al., 2012
B. Hofle, M. Hollaus, J. Hagenauer
Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data
ISPRS J. Photogramm. Remote. Sens., 67 (2012), pp. 134-147
- Huang et al., 2013
Y. Huang, B.L. Yu, J.H. Zhou, C.L. Hu, W.Q. Tan, Z.M. Hu, J.P. Wu
Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution remote sensing images
Front. Earth Sci., 7 (2013), pp. 43-54
- Huang et al., 2017
C.H. Huang, J. Yang, H. Lu, H.B. Huang, L. Yu
Green spaces as an Indicator of urban health: evaluating its changes in 28 mega-cities
Remote Sens. (Basel) (2017), p. 9
- Huang et al., 2018a
C.B. Huang, P. Huang, X.S. Wang, Z.X. Zhou
Assessment and optimization of green space for urban transformation in resources-based city – a case study of Lengshuijiang city, China
Urban For. Urban Green., 30 (2018), pp. 295-306
- Huang et al., 2018b
C.H. Huang, J. Yang, P. Jiang
Assessing impacts of urban form on landscape structure of urban green spaces in China using landsat images based on google earth engine
Remote Sens. (Basel) (2018), p. 10
- Iovan et al., 2008
C. Iovan, D. Boldo, M. Cord
Detection, characterization, and modeling vegetation in urban areas from high-resolution aerial imagery
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 1 (2008), pp. 206-213
- Jensen and Cowen, 1999
J.R. Jensen, D.C. Cowen
Remote sensing of urban suburban infrastructure and socio-economic attributes
Photogramm. Eng. Remote Sens., 65 (1999), pp. 611-622
- Jensen and Hardin, 2005
R.R. Jensen, P.J. Hardin
Estimating urban leaf area using field measurements and satellite remote sensing data
J. Agrboric., 31 (2005), pp. 21-27
- Jensen et al., 2004
R. Jensen, J. Gatrell, J. Boulton, B. Harper
Using remote sensing and geographic information systems to study urban quality of life and urban forest amenities
Ecol. Soc. (2004), p. 9
- Jensen et al., 2009
R.R. Jensen, P.J. Hardin, M. Bekker, D.S. Farnes, V. Lulla, A. Hardin
Modeling urban leaf area index with AISA plus hyperspectral data
Appl. Geogr., 29 (2009), pp. 320-332
- Jensen et al., 2012
R.R. Jensen, P.J. Hardin, A.J. Hardin
Classification of urban tree species using hyperspectral imagery
Geocarto Int., 27 (2012), pp. 443-458
- Jiang et al., 2017
B. Jiang, B. Deal, H.Z. Pan, L. Larsen, C.H. Hsieh, C.Y. Chang, W.C. Sullivan
Remotely-sensed imagery vs. eye-level photography: evaluating associations among measurements of tree cover density
Landsc. Urban Plan., 157 (2017), pp. 270-281
- Kanniah, 2017
K.D. Kanniah
Quantifying green cover change for sustainable urban planning: a case of Kuala Lumpur, Malaysia
Urban For. Urban Green., 27 (2017), pp. 287-304
- Kong and Nakagoshi, 2006
F.H. Kong, N. Nakagoshi
Spatial-temporal gradient analysis of urban green spaces in Jinan, China
Landsc. Urban Plann., 78 (2006), pp. 147-164
- Kong et al., 2010
F.H. Kong, H.W. Yin, N. Nakagoshi, Y.G. Zong
Urban green space network development for biodiversity conservation: identification based on graph theory and gravity modeling
Landsc. Urban Plan., 95 (2010), pp. 16-27
- Kopecka et al., 2017
M. Kopecka, D. Szatmari, K. Rosina
Analysis of urban green spaces based on Sentinel-2A: case studies from Slovakia
Land (2017), p. 6
- Kord et al., 2014
B. Kord, S.A. Hashemi, D. Parhizgar, V. Hemati, S. Pourabbasi
New investigation on study of green space capita of Tehran City using satellite data
J. New Biol. Rep., 3 (2014), pp. 221-227
- Landry and Pu, 2010
S. Landry, R.L. Pu
The impact of land development regulation on residential tree cover: an empirical evaluation using high-resolution IKONOS imagery
Landsc. Urban Plan., 94 (2010), pp. 94-104
- Li et al., 2015a
D. Li, Y.H. Ke, H.L. Gong, X.J. Li
Object-based urban tree species classification using Bi-Temporal WorldView-2 and WorldView-3 images
Remote Sens. (Basel), 7 (2015), pp. 16917-16937
- Li et al., 2015b
W. Li, J.D.M. Saphores, T.W. Gillespie
A comparison of the economic benefits of urban green spaces estimated with NDVI and with high-resolution land cover data
Landsc. Urban Plan., 133 (2015), pp. 105-117
- Li et al., 2016
M.M. Li, A. Stein, W. Bijker, Q.M. Zhan
Urban land use extraction from very High Resolution remote sensing imagery using a Bayesian network
ISPRS J. Photogramm. Remote. Sens., 122 (2016), pp. 192-205
- Li et al., 2018
X.J. Li, C. Ratti, I. Seiferling
Quantifying the shade provision of street trees in urban landscape: a case study in Boston, USA, using Google Street View
Landsc. Urban Plan., 169 (2018), pp. 81-91
- Liang et al., 2017
H.L. Liang, W.Z. Li, Q.P. Zhang, W. Zhu, D. Chen, J. Liu, T. Shu
Using unmanned aerial vehicle data to assess the three-dimension green quantity of urban green space: a case study in Shanghai, China
Landsc. Urban Plan., 164 (2017), pp. 81-90
- Liu and Li, 2012
C.F. Liu, X.M. Li
Carbon storage and sequestration by urban forests in Shenyang, China
Urban For. Urban Green., 11 (2012), pp. 121-128
- Liu and Wu, 2018
H.J. Liu, C.S. Wu
Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach
Int. J. Appl. Earth Obs. Geoinf., 68 (2018), pp. 298-307
- Liu and Yang, 2013
T. Liu, X.J. Yang
Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis
Remote Sens. Environ., 133 (2013), pp. 251-264
- Liu et al., 2016
Y.Q. Liu, Q.Y. Meng, J.H. Zhang, L.L. Zhang, T. Jancso, R. Vatseva
An effective Building Neighborhood Green Index model for measuring urban green space
Int. J. Digit. Earth, 9 (2016), pp. 387-409
- Liu et al., 2017
L.X. Liu, N.C. Coops, N.W. Aven, Y. Pang
Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
Remote Sens. Environ., 200 (2017), pp. 170-182
- Lu et al., 2017
Y.H. Lu, N.C. Coops, T. Hermosilla
Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data
ISPRS J. Photogramm. Remote. Sens., 126 (2017), pp. 11-23
- Lv and Liu, 2009
J. Lv, X.N. Liu
Sub-pixel mapping of urban green space using multiple endmember spectral mixture analysis of EO-1 Hyperion data
2009 Joint Urban Remote Sensing Event, 1-3 (2009), pp. 290-299
- Lv et al., 2018
H.L. Lv, W.J. Wang, X.Y. He, C.H. Wei, L. Xiao, B. Zhang, W. Zhou
Association of urban forest landscape characteristics with biomass and soil carbon stocks in Harbin City, Northeastern China
PeerJ (2018), p. 6
- Lwin and Murayama, 2011
K.K. Lwin, Y. Murayama
Modelling of urban green space walkability: eco-friendly walk score calculator
Comput. Environ. Urban Syst., 35 (2011), pp. 408-420
- Mak and Hu, 2014
H. Mak, B.X. Hu
Tree species identification and subsequent health determination from Mobile Lidar data
2014 IEEE International Geoscience and Remote Sensing Symposium (Igarss) (2014), pp. 1365-1368
- McGovern and Pasher, 2016
M. McGovern, J. Pasher
Canadian urban tree canopy cover and carbon sequestration status and change 1990-2012
Urban For. Urban Green., 20 (2016), pp. 227-232
- Mei et al., 2018
Y.D. Mei, X.L. Zhao, L. Lin, L. Gao
Capitalization of urban green vegetation in a housing market with poor environmental quality: evidence from Beijing
J. Urban Plan. Dev. (2018), p. 144
- Merry et al., 2014
K. Merry, J. Siry, P. Bettinger, J.M. Bowker
Urban tree cover change in Detroit and Atlanta, USA, 1951-2010
Cities, 41 (2014), pp. 123-131
- Mitchell et al., 2018
M.G.E. Mitchell, K. Johansen, M. Maron, C.A. McAlpine, D. Wu, J.R. Rhodes
Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping
Sci. Total Environ., 622 (2018), pp. 57-70
- Morgan and Gergel, 2013
J.L. Morgan, S.E. Gergel
Automated analysis of aerial photographs and potential for historic forest mapping
Can. J. Forest Res., 43 (2013), pp. 699-710
- Mozgeris et al., 2018
G. Mozgeris, V. Juodkiene, D. Jonikavicius, L. Straigyte, S. Gadal, W. Ouerghemmi
Ultra-light aircraft-based hyperspectral and colour-infrared imaging to identify deciduous tree species in an urban environment
Remote Sens. (Basel) (2018), p. 10
- Myeong et al., 2006
S. Myeong, D.J. Nowak, M.J. Duggin
A temporal analysis of urban forest carbon storage using remote sensing
Remote Sens. Environ., 101 (2006), pp. 277-282
- Nasi et al., 2018
R. Nasi, E. Honkavaara, M. Blomqvist, P. Lyytikainen-Saarenmaa, T. Hakala, N. Viljanen, T. Kantola, M. Holopainen
Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft
Urban For. Urban Green., 30 (2018), pp. 72-83
- Niu and Ban, 2013
X. Niu, Y.F. Ban
Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach
Int. J. Remote Sens., 34 (2013), pp. 1-26
- Nouri et al., 2018
H. Nouri, S.C. Borujeni, S. Alaghmand, S.J. Anderson, P.C. Sutton, S. Parvazian, S. Beecham
Soil salinity mapping of urban greenery using remote sensing and proximal sensing techniques; the case of Veale Gardens within the Adelaide Parklands
Sustainability (2018), p. 10
- Nowak et al., 1996
D.J. Nowak, R.A. Rowntree, E.G. McPherson, S.M. Sisinni, E.R. Kerkmann, J.C. Stevens
Measuring and analyzing urban tree cover
Landsc. Urban Plan., 36 (1996), pp. 49-57
- Omasa et al., 2008
K. Omasa, F. Hosoi, T.M. Uenishi, Y. Shimizu, Y. Akiyama
Three-dimensional modeling of an urban park and trees by combined airborne and portable on-ground scanning LIDAR remote sensing
Environ. Model. Assess., 13 (2008), pp. 473-481
- Ossola and Hopton, 2018
A. Ossola, M.E. Hopton
Measuring urban tree loss dynamics across residential landscapes
Sci. Total Environ., 612 (2018), pp. 940-949
- Parmehr et al., 2016
E.G. Parmehr, M. Amati, E.J. Taylor, S.J. Livesley
Estimation of urban tree canopy cover using random point sampling and remote sensing methods
Urban For. Urban Green., 20 (2016), pp. 160-171
- Pasher et al., 2014
J. Pasher, M. McGovern, M. Khoury, J. Duffe
Assessing carbon storage and sequestration by Canada’s urban forests using high resolution earth observation data
Urban For. Urban Green., 13 (2014), pp. 484-494
- Patino and Duque, 2013
J.E. Patino, J.C. Duque
A review of regional science applications of satellite remote sensing in urban settings
Comput. Environ. Urban Syst., 37 (2013), pp. 1-17
- Plowright et al., 2015
A.A. Plowright, N.C. Coops, N.W. Aven
Evaluating the health of urban forests using airborne LiDAR
2015 Joint Urban Remote Sensing Event (Jurse) (2015)
- Plowright et al., 2016
A.A. Plowright, N.C. Coops, B.N.I. Eskelson, S.R.J. Sheppard, N.W. Aven
Assessing urban tree condition using airborne light detection and ranging
Urban For. Urban Green., 19 (2016), pp. 140-150
- Pontius et al., 2017
J. Pontius, R.P. Hanavan, R.A. Hallett, B.D. Cook, L.A. Corp
High spatial resolution spectral unmixing for mapping ash species across a complex urban environment
Remote Sens. Environ., 199 (2017), pp. 360-369
- Pu and Landry, 2012
R.L. Pu, S. Landry
A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species
Remote Sens. Environ., 124 (2012), pp. 516-533
- Pu and Liu, 2011
R.L. Pu, D.S. Liu
Segmented canonical discriminant analysis of in situ hyperspectral data for identifying 13 urban tree species
Int. J. Remote Sens., 32 (2011), pp. 2207-2226
- Pu et al., 2015
R.L. Pu, S. Landry, J.C. Zhang
Evaluation of atmospheric correction methods in identifying urban tree species with WorldView-2 imagery
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 8 (2015), pp. 1886-1897
- Pu et al., 2018
R.L. Pu, S. Landry, Q.Y. Yu
Assessing the potential of multi-seasonal high resolution Pleiades satellite imagery for mapping urban tree species
Int. J. Appl. Earth Obs. Geoinf., 71 (2018), pp. 144-158
- Puissant et al., 2014
A. Puissant, S. Rougier, A. Stumpf
Object-oriented mapping of urban trees using Random Forest classifiers
Int. J. Appl. Earth Obs. Geoinf., 26 (2014), pp. 235-245
- Pullin and Stewart, 2006
A.S. Pullin, G.B. Stewart
Guidelines for systematic review in conservation and environmental management
Conserv. Biol., 20 (2006), pp. 1647-1656
- Qian et al., 2015
Y.G. Qian, W.Q. Zhou, W.F. Li, L.J. Han
Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images
Urban For. Urban Green., 14 (2015), pp. 39-47
- Raciti et al., 2015
S.M. Raciti, L.R. Hutyra, J.D. Newell
Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods (vol 500, pg 72, 2014)
Sci. Total Environ., 538 (2015), pp. 1039-1041
- Rafiee et al., 2009
R. Rafiee, A.S. Mahiny, N. Khorasani
Assessment of changes in urban green spaces of Mashad city using satellite data
Int. J. Appl. Earth Obs. Geoinf., 11 (2009), pp. 431-438
- Ren et al., 2015
Z.B. Ren, H.F. Zheng, X.Y. He, D. Zhang, X.Y. Yu, G.Q. Shen
Spatial estimation of urban forest structures with Landsat TM data and field measurements
Urban For. Urban Green., 14 (2015), pp. 336-344
- Richards and Edwards, 2017
D.R. Richards, P.J. Edwards
Quantifying street tree regulating ecosystem services using Google Street View
Ecol. Indic., 77 (2017), pp. 31-40
- Rosina and Kopecka, 2016
K. Rosina, M. Kopecka
Mapping of Urban Green spaces using sentinel-2a data: methodical aspects
6th International Conference on Cartography and Gis, 1 and 2 (2016), pp. 562-568
- Rougier et al., 2016
S. Rougier, A. Puissant, A. Stump, N. Lachiche
Comparison of sampling strategies for object-based classification of urban vegetation from very High Resolution satellite images
Int. J. Appl. Earth Obs. Geoinf., 51 (2016), pp. 60-73
- Santos et al., 2016
T. Santos, J.A. Tenedorio, J.A. Goncalves
Quantifying the city’s green area potential gain using remote sensing data
Sustainability (2016), p. 8
- Seiferling et al., 2017
I. Seiferling, N. Naik, C. Ratti, R. Proulx
Green streets – quantifying and mapping urban trees with street-level imagery and computer vision
Landsc. Urban Plan., 165 (2017), pp. 93-101
- Senanayake et al., 2013
I.P. Senanayake, W.D.D.P. Welivitiya, P.M. Nadeeka
Urban green spaces analysis for development planning in Colombo, Sri Lanka, utilizing THEOS satellite imagery – A remote sensing and GIS approach
Urban For. Urban Green., 12 (2013), pp. 307-314
- Shojanoori and Shafri, 2016
R. Shojanoori, H.Z.M. Shafri
Review on the use of remote sensing for urban forest monitoring
Arboric. Urban For., 42 (2016), pp. 400-417
- Shojanoori et al., 2016
R. Shojanoori, H.Z.M. Shafri, S. Mansor, M.H. Ismail
The use of WorldView-2 satellite data in urban tree species mapping by object-based image analysis technique
Sains Malays., 45 (2016), pp. 1025-1034
- Shojanoori et al., 2018
R. Shojanoori, H.Z.M. Shafri, S. Mansor, M.H. Ismail
Generic rule-sets for automated detection of urban tree species from very high-resolution satellite data
Geocarto Int., 33 (2018), pp. 357-374
- Singh et al., 2015
K.K. Singh, A.J. Davis, R.K. Meentemeyer
Detecting understory plant invasion in urban forests using LiDAR
Int. J. Appl. Earth Obs. Geoinf., 38 (2015), pp. 267-279
- Small, 2001
C. Small
Estimation of urban vegetation abundance by spectral mixture analysis
Int. J. Remote Sens., 22 (2001), pp. 1305-1334
- Small, 2003
C. Small
High spatial resolution spectral mixture analysis of urban reflectance
Remote Sens. Environ., 88 (2003), pp. 170-186
- Small, 2005
C. Small
A global analysis of urban reflectance
Int. J. Remote Sens., 26 (2005), pp. 661-681
- Small and Lu, 2006
C. Small, J.W.T. Lu
Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis
Remote Sens. Environ., 100 (2006), pp. 441-456
- Solange, 2015
U. Solange
Using GIS and Remote Sensing to Study Urban Green Structure Health and Dynamics; A Study in Kigali, Rwanda
School of Environment, Education and development (2015)
- Sun et al., 2017
Y.X. Sun, Q.Y. Meng, Z.H. Sun, J.H. Zhang, L.L. Zhang
Assessing the impacts of grain sizes on landscape pattern of urban green space
Aopc 2017: Optical Sensing and Imaging Technology and Applications (2017), p. 10462
- Sun et al., 2019
C.G. Sun, T. Lin, Q.J. Zhao, X.H. Li, H. Ye, G.Q. Zhang, X.F. Liu, Y. Zhao
Spatial pattern of urban green spaces in a long-term compact urbanization process-a case study in China
Ecol. Indic., 96 (2019), pp. 111-119
- Sung, 2012
C.Y. Sung
Evaluating the efficacy of a local tree protection policy using LiDAR remote sensing data
Landsc. Urban Plan., 104 (2012), pp. 19-25
- Tanhuanpaa et al., 2014
T. Tanhuanpaa, M. Vastaranta, V. Kankare, M. Holopainen, J. Hyyppa, H. Hyyppa, P. Alho, J. Raisio
Mapping of urban roadside trees – a case study in the tree register update process in Helsinki City
Urban For. Urban Green., 13 (2014), pp. 562-570
- Thaiutsa et al., 2008
B. Thaiutsa, L. Puangchit, R. Kjelgren, W. Arunpraparut
Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand
Urban For. Urban Green., 7 (2008), pp. 219-229
- Tian et al., 2011
Y.H. Tian, C.Y. Jim, Y. Tao, T. Shi
Landscape ecological assessment of green space fragmentation in Hong Kong
Urban For. Urban Green., 10 (2011), pp. 79-86
- Tian et al., 2014
Y.H. Tian, C.Y. Jim, H.Q. Wang
Assessing the landscape and ecological quality of urban green spaces in a compact city
Landsc. Urban Plan., 121 (2014), pp. 97-108
- Tigges and Lakes, 2017
J. Tigges, T. Lakes
High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments
Carbon Balance Manage. (2017), p. 12
- Tigges et al., 2013
J. Tigges, T. Lakes, P. Hostert
Urban vegetation classification: benefits of multitemporal RapidEye satellite data
Remote Sens. Environ., 136 (2013), pp. 66-75
- Tooke et al., 2009
T.R. Tooke, N.C. Coops, N.R. Goodwin, J.A. Voogt
Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications
Remote Sens. Environ., 113 (2009), pp. 398-407
- Ucar et al., 2016
Z. Ucar, P. Bettinger, K. Merry, J. Siry, J.M. Bowker, R. Akbulut
A comparison of two sampling approaches for assessing the urban forest canopy cover from aerial photography
Urban For. Urban Green., 16 (2016), pp. 221-230
- Van de Voorde, 2017
T. Van de Voorde
Spatially explicit urban green indicators for characterizing vegetation cover and public green space proximity: a case study on Brussels, Belgium
Int. J. Digit. Earth, 10 (2017), pp. 798-813
- Van de Voorde et al., 2008
T. Van de Voorde, J. Vlaeminck, F. Canters
Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data: a case study on Brussels
Sensors, 8 (2008), pp. 3880-3902
- Vatseva et al., 2016
R. Vatseva, M. Kopecka, J. Otahel, K. Rosina, A. Kitev, S. Genchev
Mapping Urban Green spaces based on remote sensing data: case studies in Bulgaria and Slovakia
6th International Conference on Cartography and Gis, 1 and 2 (2016), pp. 569-578
- Viana et al., 2017
J. Viana, J.V. Santos, R.M. Neiva, J. Souza, L. Duarte, A.C. Teodoro, A. Freitas
Remote sensing in human health: a 10-year bibliometric analysis
Remote Sens. (Basel) (2017), p. 9
- Voss and Sugumaran, 2008
M. Voss, R. Sugumaran
Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach
Sensors, 8 (2008), pp. 3020-3036
- Wang et al., 2016
H.F. Wang, S. Qureshi, B.A. Qureshi, J.X. Qiu, C.R. Friedman, J. Breuste, X.K. Wang
A multivariate analysis integrating ecological, socioeconomic and physical characteristics to investigate urban forest cover and plant diversity in Beijing, China
Ecol. Ind., 60 (2016), pp. 921-929
- Wang et al., 2018
J. Wang, W.Q. Zhou, Y.G. Qian, W.F. Li, L.J. Han
Quantifying and characterizing the dynamics of urban greenspace at the patch level: a new approach using object-based image analysis
Remote Sens. Environ., 204 (2018), pp. 94-108
- Wei et al., 2018
J.X. Wei, J. Qian, Y. Tao, F. Hu, W.X. Ou
Evaluating spatial priority of urban green infrastructure for urban sustainability in areas of rapid urbanization: a case study of Pukou in China
Sustainability (2018), p. 10
- Werner et al., 2014
A. Werner, C.D. Storie, J. Storie
Evaluating SAR-optical image fusions for urban LULC classification in Vancouver Canada
Can. J. Remote. Sens., 40 (2014), pp. 278-290
- WHO, 2016
WHO
Urban Green Spaces and Health
WHO Regional Office for Europe, Copenhagen (2016)
- Xiao and Mcpherson, 2005
Q.F. Xiao, E.G. Mcpherson
Tree health mapping with multispectral remote sensing data at UC Davis
Calif. Urban Ecosyst., 8 (2005), pp. 349-361
- Xiao et al., 2004
Q. Xiao, S.L. Ustin, E.G. McPherson
Using AVIRIS data and multiple-masking techniques to map urban forest tree species
Int. J. Remote Sens., 25 (2004), pp. 5637-5654
- Yan et al., 2018
J.L. Yan, W.Q. Zhou, L.J. Han, Y.G. Qian
Mapping vegetation functional types in urban areas with WorldView-2 imagery: integrating object-based classification with phenology
Urban For. Urban Green., 31 (2018), pp. 230-240
- Yang et al., 2009
J. Yang, L. Zhao, J. Mcbride, P. Gong
Can you see green? Assessing the visibility of urban forests in cities
Landsc. Urban Plan., 91 (2009), pp. 97-104
- Yang et al., 2014
J. Yang, C.H. Huang, Z.Y. Zhang, L. Wang
The temporal trend of urban green coverage in major Chinese cities between 1990 and 2010
Urban For. Urban Green., 13 (2014), pp. 19-27
- Yao et al., 2015
Z.Y. Yao, J.J. Liu, X.W. Zhao, D.F. Long, L. Wang
Spatial dynamics of aboveground carbon stock in urban green space: a case study of Xi’an, China
J. Arid Land, 7 (2015), pp. 350-360
- Yu et al., 2016
S.Y. Yu, B.L. Yu, W. Song, B. Wu, J.H. Zhou, Y. Huang, J.P. Wu, F. Zhao, W.Q. Mao
View-based greenery: a three-dimensional assessment of city buildings’ green visibility using Floor Green View Index
Landsc. Urban Plan., 152 (2016), pp. 13-26
- Yu et al., 2017
Z.L. Yu, Y.H. Wang, J.S. Deng, Z.Q. Shen, K. Wang, J.X. Zhu, M.Y. Gan
Dynamics of hierarchical urban green space patches and implications for management policy
Sensors (2017), p. 17
- Zhang and Hu, 2012
K.W. Zhang, B.X. Hu
Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles
Remote Sens. (Basel), 4 (2012), pp. 1741-1757
- Zhang and Qiu, 2012
C.Y. Zhang, F. Qiu
Mapping individual tree species in an urban forest using airborne Lidar data and hyperspectral imagery
Photogramm. Eng. Remote Sensing, 78 (2012), pp. 1079-1087
- Zhang and Xu, 2018
H.S. Zhang, R. Xu
Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta
Int. J. Appl. Earth Obs. Geoinf., 64 (2018), pp. 87-95
- Zhang et al., 2007
W. Zhang, X.L. Zhang, L. Li, Z.L. Zhang
Urban forest in Jinan City: distribution, classification and ecological significance
Catena, 69 (2007), pp. 44-50
- Zhang et al., 2018
H.S. Zhang, J. Li, T. Wang, H. Lin, Z.Z. Zheng, Y. Li, Y.F. Lu
A manifold learning approach to urban land cover classification with optical and radar data
Landsc. Urban Plan., 172 (2018), pp. 11-24
- Zhang et al., 2019
R. Zhang, J.Q. Chen, H. Park, X.H. Zhou, X.C. Yang, P.L. Fan, C.L. Shao, Z.T. Ouyang
Spatial accessibility of urban forests in the Pearl River Delta (PRD), China
Remote Sens. (Basel) (2019), p. 11
- Zheng et al., 2017
S. Zheng, Z. Yao, Y. Liao, J. Liu
Above ground carbon stock estimation of urban green space using landsat satellite imagery
Boletin Tecnico/Tech. Bull., 55 (2017), pp. 591-600
- Zhou and Wang, 2011
X.L. Zhou, Y.C. Wang
Spatial-temporal dynamics of urban green space in response to rapid urbanization and greening policies
Landsc. Urban Plan., 100 (2011), pp. 268-277
- Zhou et al., 2016
J.H. Zhou, J. Qin, K. Gao, H.B. Leng
SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery
Int. J. Remote Sens., 37 (2016), pp. 2541-2559
- Zhou et al., 2018
W.Q. Zhou, J. Wang, Y.G. Qian, S.T.A. Pickett, W.F. Li, L.J. Han
The rapid but “invisible” changes in urban greenspace: a comparative study of nine Chinese cities
Sci. Total Environ., 627 (2018), pp. 1572-1584
- Zhu et al., 2005
X.F. Zhu, C.Y. He, Y. Pan, J.S. Zhang
Detecting urban green space from Landsat7 ETM+ data by using an unmixing algorithm of support vector machine
IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 1-8 (2005), pp. 1467-1470
- Zhu et al., 2019
Z. Zhu, M.A. Wulder, D.P. Roy, C.E. Woodcock, M.C. Hansen, V.C. Radeloff, S.P. Healey, C. Schaaf, P. Hostert, P. Strobl, J.F. Pekel, L. Lymburner, N. Pahlevan, T.A. Scambos
Benefits of the free and open Landsat data policy
Remote Sens. Environ., 224 (2019), pp. 382-385
- Zoran et al., 2015
M.A. Zoran, R.S. Savastru, D.M. Savastru, M.N. Tautan, L.A. Baschir
Urban green spatio-temporal changes assessment through time-series satellite data
Earth Resources and Environmental Remote Sensing/Gis Applications Vi 9644 (2015)
- Zylshal et al., 2016
Zylshal, S. Sulma, F. Yulianto, J.T. Nugroho, P. Sofan
A support vector machine object based image analysis approach on urban green space extraction using Pleiades-1A imagery
Model. Earth Syst. Environ. (2016), p. 2